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We investigate the overdamped Brownian motion in a supersymmetric periodic potential switched by Mar-
kovian dichotomous noise between two configurations. The two configurations differ from each other by a shift
of one-half period. The calculation of the effective diffusion coefficient is reduced to the mean first passage
time problem. We derive general equations to calculate the effective diffusion coefficient of Brownian particles
moving in arbitrary supersymmetric potential. For the sawtooth potential, we obtain the exact expression for
the effective diffusion coefficient, which is valid for the arbitrary mean rate of potential switchings and
arbitrary intensity of white Gaussian noise. We find the acceleration of diffusion in comparison with the free
diffusion case and a finite net diffusion in the absence of thermal noise. Such a potential could be used to
enhance the diffusion over its free value by an appropriate choice of parameters.
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I. INTRODUCTION

Brownian diffusion in periodic potential is an appropriate
model to describe fluctuations of the Josephson supercurrent
through a tunneling junction �1,2�, diffusive motion of atoms
in crystals �3�, superionic conduction �4�, charge density
waves �5�, chemical reactions �6�, neuronal activity �7�, syn-
chronization of oscillations �8�, rotating dipoles in external
fields �9�, particle separation by electrophoresis �10�, and so
on. Although qualitative asymptotic behavior of the system is
well known, the calculations of particle mean drift, velocity
spectrum, and the effective diffusion coefficient were per-
formed in the general damped case only by simulations or by
numerical solution of the Fokker-Planck equation �11�. Ana-
lytical results in the overdamped limit were obtained for the
effective diffusion coefficient in arbitrary fixed periodic po-
tential �12�, for a symmetric periodic potential modulated by
white Gaussian noise �13,14�, for the mean velocity and the
effective diffusion coefficient of a Brownian particle moving
in a tilted periodic potential �15,16�, and for the transition
rates of Brownian motion with time-periodic driving force
�17�. In the last case, as for modulation by white Gaussian
noise �13,14�, authors obtained the acceleration of diffusion
in comparison with the free diffusion case.

The investigations of Brownian diffusion in fluctuating
periodic potentials �flashing potential model� were also per-
formed in the framework of the molecular motors problem,
i.e., unidirectional motion of Brownian particles along the
one-dimensional periodic structures �18�. As a rule, a two-
state model in which asymmetric �ratchet-like� potential ran-
domly switches between two different configurations was in-
vestigated �19�, and in particular, the so-called on-off ratchet
scheme was considered in Ref. �20�. The most important
quantity to be calculated was the mean stationary flow of

Brownian particles, but theoretical investigations were only
performed for the simplest asymmetric potential as the saw-
tooth ratchet.

As it was recently shown, fluctuations of a potential via
the random shifts of the one-half period provide a high effi-
ciency with which a Brownian motor converts fluctuations
into useful work �21�. These types of fluctuations can be
caused by an external cyclic process generating the potential
profile or a far-from-equilibrium chemical reaction resulting
in a conformational change of the particle or of the track
�22�.

The sorting of Brownian particles by the enhancement of
their effective diffusion coefficient is a subject of increasing
scientific interest in the last years, both from experimental
�23–26� and theoretical points of view �17,27�. Specifically,
in Ref. �26�, the interplay of global spatiotemporal symmetry
and local dynamics was analyzed, and in Refs. �17,25�, the
enhancement of diffusion in symmetric potentials was inves-
tigated.

Motivated by these studies and by the importance of the
problem of dopant diffusion acceleration in semiconductors
for solid state microelectronics �28�, we try to understand
how nonequilibrium symmetrical correlated forces influence
thermal systems when potentials are symmetric. This is done
by using a randomly shifting potential satisfying the super-
symmetry criterion �29�. We consider a different approach
with respect to the previous theoretical investigations �21�.
Starting from the analogy between a continuous Brownian
diffusion at large times and the “jump diffusion” model �16�,
we reduce the calculation of effective diffusion coefficient to
the first passage time problem. The general equations ob-
tained are solved for the sawtooth periodic potential, and the
exact expression for the effective diffusion coefficient is de-
rived without any assumptions on the intensity of the white
Gaussian noise and switchings mean rate of the potential. We
find �i� the enhancement of diffusion as compared to free
thermal diffusion, �ii� a finite net diffusion due to the poten-
tial fluctuations, and �iii� a diffusion independent on the ther-
mal noise intensity for very deep potential wells.
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II. GENERAL EQUATIONS

Let us consider the one-dimensional overdamped Brown-
ian motion in randomly switching periodic potential U�x�

dx

dt
= −

dU�x�
dx

��t� + ��t� , �1�

where x�t� is the Brownian particle displacement at time t,
��t� is the white Gaussian noise with zero mean and intensity
2D, ��t� is a Markovian dichotomous noise, which takes the
values ±1 with switchings mean rate �. Thus, we investigate
the Brownian diffusion in a periodic potential flipping be-
tween two configurations, U�x� and −U�x� �see Fig. 1�. In the
“overturned” configuration, the maxima of the potential be-
come the minima and vice versa. Further, we assume that the
potential U�x� satisfies the supersymmetry criterion �29�

E − U�x� = U�x −
L

2
� , �2�

where L is the spatial period of the potential �see Fig. 1�. In
accordance with Eq. �2�, we can rewrite Eq. �1� as

dx

dt
= −

�

�x
U�x +

L

4
���t� − 1�� + ��t� , �3�

i.e., as in Ref. �21�, we consider the fluctuations of the po-
tential via random shifts of one-half period L /2.

In such a situation, the ratchet effect is absent: �ẋ�=0, and
following Ref. �12�, we can determine the effective diffusion
coefficient as the limit

Def f = lim
t→�

�x2�t��
2t

. �4�

For a fixed periodic potential ���t�=1� the exact expression
for Def f, obtained in Ref. �12�, has the form

Def f

D
= 	 1

L



0

L

eU�x�/Ddx
1

L



0

L

e−U�x�/Ddx�−1

. �5�

In the case when the modulation ��t� is an additional white
Gaussian noise, statistically independent of ��t�, with zero
mean and intensity 2D�, the calculations give �13,14�

Def f

D
= 	 1

L



0

L dx
�1 + D��U��x��2/D

�−2

. �6�

We place for convenience all Brownian particles at the origin
at t=0. Because of the periodicity of the potential, the diffu-
sion process can be coarsely conceived as consecutive tran-
sitions of the Brownian particle from the points of potential
minima xm=mL to the nearest neighboring points xm±1. The
transition time represents the escape time over left or right
absorbing boundaries x=xm±1 for a particle starting from the
point x=xm, i.e., the random first passage time. Thus, we can
consider, as in Ref. �15�, the jumped diffusion model

x̃�t� = 
k=1

n�0,t�

qk, �7�

where qk are the random increments of a jump with values
±L and n�0, t� denotes the total number of jumps in the time
interval �0, t�. In the asymptotic limit t→�, the random pro-
cesses x�t� and x̃�t� become statistically equivalent, i.e.,
�x2�t����x̃2�t��.

The non-Markovian random process x�t� has Markovian
dynamics between flippings, i.e., involves alternating pieces
of two Markovian random processes x1�t� and x2�t�, which
are governed by Langevin equations �see Eq. �1��

ẋ1 = − U��x1� + ��t�, ẋ2 = U��x2� + ��t� .

The random increments qi and the waiting times tj between
jumps are, therefore, statistically independent of each other
and have the same probability densities, W�q� and w�t�, re-
spectively. Specifically the distribution of waiting times tj is

w�t� =
w+�t� + w−�t�

2
, �8�

where w+�t� and w−�t� are the first passage time distributions
for the configuration of the potential with ��0�= +1 and for
the initially overturned configuration ���0�=−1�, respec-
tively. Because of the symmetry of the potential U�x� and of
the dichotomous noise ��t�, the probabilities of transitions to
the left and to the right have the same value, and the distri-
bution W�q� reads

W�q� =
1

2
���q − L� + ��q + L�� . �9�

By calculating �x̃2�t�� from Eqs. �7�–�9� and substituting
in Eq. �4�, we can express the effective diffusion coefficient
in terms of the mean waiting time �see, for example, Refs.
�14,15��

Def f =
L2

2�
. �10�

In accordance with Eq. �8�, � is the semisum of the mean first
passage times �MFPTs� �+ and �−, corresponding to the prob-
ability distributions w+��� and w−���.

For our system �1�, the exact equations for the MFPTs for
Brownian diffusion in randomly switching potentials, de-
rived from the backward Fokker-Planck equation �30�, are

FIG. 1. Switching potential with supersymmetry.
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D�+� − U��x��+� + ���− − �+� = − 1,

D�−� + U��x��−� + ���+ − �−� = − 1, �11�

where �+�x� and �−�x� are the MFPTs for initial values
��0�= +1 and ��0�=−1, respectively, with the starting posi-
tion of Brownian particles at the point x. We consider the
initial position at x=0 and solve Eqs. �11� with absorbing
boundaries at x= ±L

�±�− L� = 0, �±�L� = 0. �12�

Then by substituting �= ��+�0�+�−�0�� /2 in Eq. �10�, we find

Def f =
L2

�+�0� + �−�0�
. �13�

We place a reflecting boundary at the origin, because the
probability flow at the point x=0 equals zero for any times.
We can solve, therefore, the set of equations �11� in the range
�0,L� with the following boundary conditions �see Ref.
�30��:

�±��0� = 0, �±�L� = 0, �14�

which are equivalent to Eqs. �12�. By introducing two new
auxiliary functions

T�x� =
�+�x� + �−�x�

2
, ��x� =

�+�x� − �−�x�
2

, �15�

we can rewrite Eqs. �11� as

R� + f�x��� = −
1

D
,

�� + f�x�R −
2�

D
� = 0, �16�

where R�x�=T��x� and f�x�=−U��x� /D. According to Eqs.
�14� and �15�, we have the following boundary conditions for
Eqs. �16�:

R�0� = ���0� = 0, T�L� = ��L� = 0. �17�

After integrating the first equation �16� in the interval �0,x�
and using the boundary condition �17� for R�0�, we get

R�x� = −
x

D
− 


0

x

f�y����y�dy . �18�

By substituting R�x� into the second Eq. �16�, we obtain the
following integro-differential equation for the function ��x�

�� − f�x�

0

x

f�y����y�dy −
2�

D
� =

xf�x�
D

. �19�

To find the value T�0�, we integrate Eq. �18� in the interval
�0,L�

T�L� = −
L2

2D
− 


0

L

�L − x�f�x����x�dx + T�0� . �20�

Using the boundary conditions �17� and substituting T�0� in
Eq. �13�, we find finally

Def f

D
= 	1 +

2D

L



0

L �1 −
x

L
� f�x����x�dx�−1

. �21�

Equations �19� and �21� solve formally the problem. The
sign of the integral term in Eq. �21� determines the accelera-
tion or slowing down of diffusion in comparison with the
case when particles diffuse freely. The sign “	” corresponds
to the slowing down and the sign “�” corresponds to the
acceleration. Unfortunately, Eq. �19� cannot be solved for
arbitrary periodic potential U�x�. Further, we analyze Eqs.
�19� and �21� for the sawtooth periodic potential and derive,
for this potential, the exact formula for the effective diffusion
coefficient Def f.

III. SAWTOOTH PERIODIC POTENTIAL

Let us consider the symmetric sawtooth periodic potential

U�x� = � kx , 0 
 x 
 L/2

k�L − x� , L/2 
 x 
 L
� , �22�

where k=2E /L �see Fig. 2�. We solve Eq. �19� for the re-
gions 0�x�L /2 and L /2�x�L separately, using the
boundary conditions �17�

���0� = 0, ��L� = 0, �23�

and the continuity conditions for functions ���x� and ��x� at
the point x=L /2

���L

2
− 0� = ���L

2
+ 0�, ��L

2
− 0� = ��L

2
+ 0� . �24�

To obtain the solution in interval �0,L /2�, we substitute
f�x�=−k /D in Eq. �19� and we get

�� − �2� = −
kx

D2 −
k2

D2��0� , �25�

where �=�k2 /D2+2� /D. The general solution of Eq. �25�,
which satisfies the first boundary condition �23� reads

FIG. 2. Switching sawtooth periodic potential.
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��x� = c1�cosh �x +
k2

2�D
� −

k

3 �D sinh �x − x� ,

���x� = c1


D
sinh �x −

k

2 �cosh �x − 1� , �26�

where =�D.
To solve Eq. �19� in the range L /2�x�L, we write it as

�� + f�x�

x

L

f�y����y�dy −
2�

D
� =

xf�x�
D

+ f�x�

0

L

f�y����y�dy .

Substituting in this equation f�x�=k /D for interval �L /2 ,L�
and taking into account the second boundary condition �23�,
we obtain

�� − �2� =
kx

D2 +
k

D
A , �27�

where we introduced an additional unknown constant

A = 

0

L

f�x����x�dx . �28�

The general solution of Eq. �27� can be written as

��x� = c2 cosh ��x − L� + c3 sinh ��x − L� −
kx

2 −
kD

2 A .

�29�

If we put x=L in Eq. �29� and use the second boundary
condition �23�, we arrive at

c2 =
k

2 �L + DA� , �30�

and, as a consequence,

��x� = c2�cosh ��x − L� − 1� + c3 sinh ��x − L� +
k�L − x�

2 ,

���x� =


D
�c2 sinh ��x − L� + c3 cosh ��x − L�� −

k

2 .

�31�

Using the solutions �26� and �31�, continuity conditions �24�,
and Eqs. �28� and �30�, it is easily to obtain the following
algebraic set of equations for unknown constants c1, c2, and
c3

c1 sinh � + c2 sinh � − c3 cosh � =
kD

3 �cosh � − 2� ,

c1�cosh � +
k2

2�D
� − c2�cosh � − 1� + c3 sinh � =

kD

3 sinh � ,

c1�2 cosh � − 1 +
k2

2�D
� +

2

k2 c2 =
2�DL

k2 +
2kD

3 sinh � ,

�32�

where �=�L /2. Substituting Eqs. �26� and �31� in Eq. �21�
and performing the integration, we find

Def f

D
= �1 +

2k

L
	− �c1 +

c3

2�
−

kD

2�3��cosh � − 1�

+
1

2
�c2 − c1 +

2kD�

3 �� sinh �

�
− 1� − c1

2

4�D
��−1

.

�33�

The solutions of the set of Eqs. �32� are

c1 =
4kD�2sinh � − ��sinh2 �/2�

3�1 − 2� + 4� cosh � + �2 cosh 2��
,

c2 =
2kD����cosh � + � cosh 2�� + �1 − 2� + 3� cosh ��sinh ��

3�1 − 2� + 4� cosh � + �2 cosh 2��
,

c3 =
kD�7� − 1 − �2 + 2�1 − 4� + �2�cosh � + 3� cosh 2� + 2���1 − � + 2� cosh ��sinh ��

3�1 − 2� + 4� cosh � + �2 cosh 2��
, �34�

where we introduced the new dimensionless parameter �=2�D /k2. Substituting expressions �34� in Eq. �33�, we obtain finally

Def f

D
=

2�2�1 + ���1 − 2� + 4� cosh � + �2 cosh 2��
2�2�2�1 + �� + 2��7 − � + 2�2�2�sinh2 � + 4���1 − 3� + 4� cosh ��sinh � + 8�1 − 6� + �2�sinh2��/2�

. �35�
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It must be emphasized that the result �35�, for the effective
diffusion coefficient of Brownian particles in switching saw-
tooth periodic potential, was derived without any assump-
tions on the intensity of white Gaussian noise, the mean rate
of switchings, and the values of the potential profile param-
eters.

IV. ACCELERATION OF DIFFUSION

Let us analyze the possibility to accelerate a diffusion in
the flipping sawtooth periodic potential in comparison with a
free diffusion.

First of all, we introduce two new dimensionless param-
eters having a clear physical meaning

� =
E

D
, � =

�L2

2D
. �36�

The parameter � is the ratio between the height of the po-
tential barrier and the intensity of white Gaussian noise. The
parameter � is the ratio between the time of a free diffusion
through the distance L and the mean time interval between
switchings. The dimensionless parameters � and �, involved
in Eq. �35� for the effective diffusion coefficient, can be ex-
pressed in terms of � and � as

� = ��2 + �, � =
�

�2 . �37�

Let us investigate the limiting cases of very small and very
large parameters � and �. At very rare flippings ��→0� we
have, in accordance with Eq. �37�, ���, �→0, and Eq.
�35� gives

Def f

D
�

�2

4 sinh2��/2�
, �38�

which coincides with the result obtained from Eq. �5� for the
potential �22�. Because of sinh x�x�x�0�, we have Def f

�D, and diffusion slows down in the fixed periodic potential
in comparison with the case when Brownian particles diffuse
freely.

In the opposite case of very fast switchings ��→��, we
can predict the result. In such a situation, the Brownian par-
ticles “see” the average potential i.e., �U�x�+ (−U�x�)� /2=0,
and, as a result, we obtain diffusion in the absence of a
potential. Actually, if we put in Eq. �35�, �����1
+�2 / �2���→� and �=� /�2→�, we find

Def f

D
� 1 +

�2

�
. �39�

As Eq. �39� indicates, by fast switching of a potential, we
always obtain the acceleration of diffusion in comparison
with a free diffusion case.

From the exact expression �35�, we plot in Fig. 3 the
normalized effective diffusion coefficient Def f /D as a func-
tion of the dimensionless mean rate of potential switching �,
for different values of the dimensionless height of potential
barriers �. We have a nonmonotonic behavior for all values
�. The rate of diffusion becomes greater than the rate of a

free diffusion above some value of �. This value decreases
with the increasing height of the potential barrier.

In the limiting case of ��1, we find from Eq. �35�,

Def f

D
� 1 +

�2

2�2 cosh 2��
��1 + 2��cosh 2�� − �4 cosh ��

− 3��1 + 4��sinh �� − 2��� . �40�

As the analysis of Eq. �40� shows, for relatively low barriers,
we obtain the enhancement of diffusion just at relatively fast
switchings: ��9.195.

For very high potential barriers ��→�� and fixed mean
rate of switchings �, we have, from Eq. �37�, ���→� ,�
→0,�2�→�. As a result, we find from Eq. �35�,

Def f

D
=

2

7
� �41�

or, in accordance with Eq. �36�,

Def f =
�L2

7
. �42�

We obtained an interesting result: a diffusion at superhigh
potential barriers �or at very deep potential wells� is due to
the switchings of a potential only. According to Eq. �42�, the
effective diffusion coefficient depends on the mean rate of
flippings and the spatial period of potential profile only and
does not depend on D. In the case of an asymmetric potential
with a very high barrier to one side, this mechanism without
diffusive steps provides the high efficiency of the Brownian
motor, because this barrier blocks the counterflow of par-
ticles �21�.

Let us explain this result �42�. A diffusion is practically
absent at very rare switchings ��→0�, because the Brownian
particles are not able to cross such high potential barriers.
They can move in both directions by flippings only. After the
first switching, the Brownian particles fall rapidly in the
nearest potential wells at the points x= ±L /2 and then wait
for the next potential switching. As a result, from Eq. �10�
�with L /2 instead of L�, we obtain Def f �L2 / �8����, where

FIG. 3. The normalized effective diffusion coefficient versus the
dimensionless switchings mean rate of potential �=�L2 / �2D� for
different values of the dimensionless height of the potential barrier.
Namely �=3,7 ,9, for the curves a, b, and c, respectively.
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���=1/�. Thus, the smaller the mean time interval between
flippings ��� is or the greater the spatial period L is the
greater the rate of diffusion is.

The behavior of the normalized effective diffusion coeffi-
cient Deff /D as a function of the dimensionless height of the
potential barrier � for three values of the dimensionless
mean rate of switchings � is shown in Fig. 4. We note that
all curves are nonmonotonic. The rate of diffusion decreases
for small values of � �see Eq. �40��, reaches a minimum, and
then tends to the asymptotic value given by Eq. �42�. We
observe the acceleration of diffusion for any � just for pa-
rameter ��9.195.

The area of diffusion acceleration, obtained by Eq. �35�, is
shown on the plane �� ,�� in Fig. 5 as the shaded area.

This area lies inside the rectangular region ��0 and �
�3.5. The three-dimensional �3D� plot of Def f /D as a func-
tion of � and � is shown in Fig. 6.

Finally, we can compare our result �35� with the case of
modulation by external white Gaussian noise �see Eq. �6��.
We formally introduce the amplitude a of a Markovian di-
chotomous noise ��t� by replacing � with a� and then by
making the limit a→�, �→�, and a2 /�→2D�. This is be-
cause the Markovian dichotomous noise becomes, in this
limit, the white Gaussian noise with intensity 2D�. From Eq.
�35�, therefore, we get

Def f = D + k2D�. �43�

Equation �43� coincides with the formula previously ob-
tained in Refs. �13,14�, which is derived by substituting the
potential profile �22� in Eq. �6�.

To analyze the dependence of the effective diffusion co-
efficient Def f on the friction coefficient h, corresponding to
the situation in which different types of particles are moving
in the same periodic potential, we replace in Eqs. �35�–�37�:
E with E /h and D with D /h. This is because we put in Eq.
�1� h=1. In Fig. 7, we report the behaviors of the normalized
effective diffusion coefficient Def f /D as a function of the
friction coefficient h for different values of dimensionless
parameters � and �. The nonmonotonic behavior of the nor-
malized effective diffusion coefficient shown in Fig. 7 gives
evidence that the dynamics of Eq. �1� can act as a device for

FIG. 4. The normalized effective diffusion coefficient versus the
dimensionless height of potential barriers �=E /D for different val-
ues of the dimensionless switchings mean rate of the potential.
Namely �=3.5,5 ,7 for the curves a, b, and c, respectively.

FIG. 5. The shaded area is the parameter region on the plane
�� ,�� where the diffusion acceleration compared with a free diffu-
sion case can be observed. Here �=E /D and �=�L2 / �2D�.

FIG. 6. �Color online� 3D plot of normalized effective diffusion
coefficient versus the relative height of potential barriers � and the
dimensionless mean rate of potential flippings �.

FIG. 7. �a� The normalized effective diffusion coefficient as a
function of the friction coefficient h for fixed �=5 and different
values of �: 5, 10, 20. �b� The normalized effective diffusion coef-
ficient as a function of the friction coefficient h for fixed �=20 and
different values of �: 10, 15, 20.
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sorting different types of particles by enhancement of the
diffusion process. Therefore, according to the Stokes’ law on
the friction coefficient, particles with small size will be ac-
celerated more than particles with greater size at the high
switchings mean rate of the potential. While vice versa at
low switchings rate of the potential, Brownian particles with
great size will be accelerated more with respect to particles
with smaller size. The maximum of Def f /D shifts toward
higher values of the friction coefficient as the frequency �
decreases, for a fixed value of the barrier height �Fig. 7�a��.
In Fig. 7�b�, we report the enchancement of diffusion for
fixed value of the parameter �, namely �=10, and different
values of the � parameter. The maximum of Def f /D increases
with increasing height of the barrier. This surprising effect is
due to the high slope of the potential for high barriers.

V. CONCLUSIONS

We studied overdamped Brownian motion in a supersym-
metric periodic potential switched by Markovian dichoto-
mous noise between two opposite configurations. We re-
duced the problem to the mean first passage time problem
and derived the general equations to calculate the effective
diffusion coefficient. For the sawtooth potential with super-
symmetry, we obtain the exact formula for the effective dif-

fusion coefficient, which is valid for arbitrary intensity of
white Gaussian noise and arbitrary parameters of the external
dichotomous noise and of potential. We obtained the area on
the parameter plane �� ,�� where the acceleration of diffu-
sion can be observed. We analyzed in detail the limiting
cases of very high and very low potential barriers, as well as
very rare and very fast switchings. A diffusion process is
obtained in the absence of thermal noise. Supersymmetric
periodic potentials can be used to enhance the diffusion over
its free value by an appropriate choice of parameters. Our
results could be used to sort particles by their friction coef-
ficient or by their size. The interesting experiment reported in
Ref. �24� showed that it is possible to obtain the experimen-
tal setup with the desired properties of symmetry and peri-
odicity of the potential structure. Finally, another important
application of our results could be to speed up the diffusion
process of dopant in the p-n junction in heterostructures �28�.
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